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Dislocations and stacking fault energy in 
silicon ditelluride 
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The stacking fault energy in silicon ditelluride single crystals has been determined for 
different dislocation configurations observed by electron microscopy. The configurations 
studied are dislocation ribbons and dislocation nodes, and the ratio of the stacking fault 
energy to the shear modulus is estimated as 3,//~ = 1.6 x 10 -~  cm. Some common 
features observed in electron microscopy are also discussed in terms of dislocation 
networks of extended and contracted nodes and symmetrical or asymmetrical three-fold 
ribbons, as well as various dislocation interactions. 

1. Introduction 
SiTe2 is a semiconductor with a layered structure 
useful for the study of the alloys formed between 
Si-CdTe interfaces of  Si-vidicon targets [2]. 
There is also considerable interest in structure in 
connection with polytypism, superstructure, and 
the existence of short-range order transition states 
[2,31. 

The present work is concerned with dislo- 
cations and stacking faults of the basic structure 
of SiTe2, which was studied by Weiss e t  al. [4]. It 
was found to have the hexagonal D~d, cadmium 
iodide-like structure [5], composed of layers of 
atoms along the hexagonal axis characteristic of 
cubic close-packing, and in the order 

- T e - S i - T e - T e - S i - T e -  

a ~ c a /3 c 

The close-packed layers of Si atoms are sand- 
wiched between two close-packed tellurium layers. 
The binding between Si and Te is probably 
stronger than the van der Waals binding between 
the two tellurium layers. This description refers to 
the basic structure [4] with ao -~ 4.28A, 
Co = 7.71A" 

Additional weak diffraction spots reveal a 
superstructure with a unit cell three times larger 
than the basic one with a' = ao x/~ = 7.428 A and 
c' = Co = 6.733 •. According to Taketochi e t  al. 

[2] this superstructure may be attributed to a 
small displacement of Te atoms, Fig. 1, where 
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arrows show the direction of a displacement which 
differs by about 1.6% of the lattice spacing from 
the normal position. 

Using an automated Philips PW 1100 single 
crystal diffractometer we were able to establish a 
unit cell with a =  7.428A, c = 13.471 = 
2 x 6.735 A, which indicates that SiTe2 appeared 
with a c-parameter twice the height of the basic 
structure. This is evidence of the existence of a 4H 
modification of the compound. It is well known 
that the most abundant structure of CdI2 is the 
4H polytypic modification [6]. Reflection elec- 
tron diffraction patterns revealed a two dimen- 
sional lattice, disordered parallel to the c-axis, 
showing different orderings of the stacking 
sequence [21. 

2. Specimen preparation 
Single crystals of SiTe2 were grown by following 
the method described by Rau e t  al. [1 ]. Stoichio- 
metric amounts of Si and Te were placed in a 
quartz ampoule, evacuated to 10 -4 torr and 
heated for 72h at 1075~ in a furnace with a 
small temperature gradient. The ampoule was then 
slowly cooled. Samples for electron microscopy 
were easily prepared by cleaving, probably 
between the tellurium layers where the binding is 
weak. Specimens from these crystals showed weak 
extra diffraction spots Fig. 2a, revealing a super- 
structure formation, although in some cases 
diffuse scattered intensities appeared, Fig. 2b, 
which may be attributed to thermal vibration, size 
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effects or a short-range order amendment.  
Chemical analysis of the crystals showed a com- 

position range from SiTe 1.999 to SiTe 1.908. 
In order to avoid superstructure formation, 

crystals were prepared by a modified method. A 

sealed ampoule was heated for 72h  at 1100~ in 

a vertical furnace without a gradient, annealed for 

24 h at 900 ~ C and then rapidly quenched in iced 

water. In this case, the material was mainly poly- 

crystalline, although small single crystals were 
found suitable for TEM observations. Electron 

c O  Te 

p e  S i  

a ~ T e  

Figure 1 (a) One sandwich of the octa- 
hedral structure of silicon diteUuride with 
indication of the basic (heavy lines) and 
superstructure (broken lines) unit cell. 
Arrows show the direction of Te dis- 
placements; the Te atoms are on the 
planes z = • and the Si atoms on the 
plane z = 0. (b) Key for denoting Burgers 
vectors and (c), (d) the passage of partials 
with indicated Burgers vectors cause the 
lettering permutation in the sense of the 
arrows. 

diffraction patterns from these areas revealed that 

no extra spots were evident, Fig. 2c. Obviously, 

due to the quenching process from the high tem- 

perature, the superstructure could not  be formed. 

3. Stacking faults 
The theoretical considerations for the possible 

stacking faults in cadmium iodide-like structures 

have already been given by Siems et al. [7]. There 
are two possibilities. In the first case, a stacking 
fault results from the wrong stacking of perfect 

Figure 2 Diffraction patterns from (0 0 0 1) section. (a) Superstructure spots are present which in (c) are absent and in 
(b) diffuse scattering appears. 
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sandwiches. A sandwich is called perfect when the 
atoms in all three of its constituent planes are in 
different positions. Excluding the possibility of 
like atom-on-atom stacking, the following stacking 
sequences are then possible stacking faults 

~cbTa 

a~caTb 

a~cbTc. 

In the second case stacking faults containing 
imperfect sandwiches are formed where the atoms 
in two of its planes are on top of each other. The 
atom-on-atom planes may be the two Te planes 
(aria) or one Si and one Te plane (aab) The 
stacking faults of the second type probably have a 
higher energy than those of the first type because 
the bonds now are not of the weak van der Waals 
type. 

In the case of CdI2 or SnS2 the metallic atoms 
could occupy only octahedral sites, so the stacking 
(a~b) is energetically very unfavourable and is 
accompanied by a synchro-shear changing of the 
sequence from aab to aTb. In the case of  SiTe2 the 
ionic radii are R(Te 2-) = 2.11 A and R(Si 4§ = 
0.42 A [8], so the radius ratio is 

R(Sr § 
0.20 

R(Te 2-) 

If  in the three stackings a~c, aria, aab the Te 2- 
spheres of radius R are packed in contact, the radii 
which the cation spheres should have, to bring 
them into contact with the anions, are: 

For prismatic trigonal a/3a : 0.53R 

For octahedral arc : 0.41R 

For tetrahedral ao~b : 0.22R 

The radius ratio of SiT% suggests that the cation 
can be accommodated in the terrahedral con- 
figuration, so that the stacking aab has not a pro- 
hibitive high energy and can occur without the 
synchro-shear necessary in the case of CdI2 or 
SnS2. 

A perfect dislocation in the basal plane of a 
SiTe2 crystal can dissociate into two Shockley 
partial dislocations, bounding a stacking fault, 
according to the schemes 

AB > Ao + oB type I 

o r  

AB > aB + Ao type II 

The possible stacking faults will depend both 
on the type of separation and on the exact pos- 
ition of the glide plane. Let the normal stacking be 
~ c ~ c  throughout the crystal. Then the possible 
stacking faults of a dislocation ribbon will be: 

type I afic/bTabTa (i) 

a~ca/TabTa 
(ii) 

a~ca/3/abTa 

type II a/~c/cabcab (iii) 

aflca/abcab 
(iv) 

~cafi/bco& 

The slanting line indicates the position of the glide 
plane. 

Thus, from the six possible stacking faults the 
fault (i) will have the lower energy because it 
corresponds to the wrong stacking of perfect sand- 
wiches, which remain unsheared. The faults (ii) 
have one layer of cations in the prismatic trigonal 
interstices and are expected to have high energy. 
The fault (iii) has like atoms on top of each other 
and will have prohibitive high energy, while the 
faults (iv) have one cation layer in the tetrahedral 
interstices and will have medium energy. 

4. Observations 
Observations were made on both types of crystals 
i.e. with and without superstructure. All crystals 
showed extensive dislocation configurations. The 
dislocations were presumably introduced during 
growth and it is characteristic that crystals without 
the superstructure formation showed a higher 
density of dislocations, probably because of the 
quenching process. 

Most of  the dislocations were dissociated into 
partial dislocations. The main glide plane coincides 

TABLE I Values of g.b for partial dislocations, 
[ 0 0 0 1 ] orientation 

g b =  b =  b =  
, , - ~ [ 0 r l 0 ]  x[1010] -g l i100]  

2 0 i 0  413 --2/3 -2/3 
2200 --2/3 4/3 --2/3 
0220 --2/3 --2/3 4/3 
2110 1 --1 0 
1210 0 1 --1 
1120 --1 0 1 
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with the basal plane which is also the cleavage 
plane. The lowest stacking fault energy will occur 
for faults with the glide plane lying between two 
tellurium layers not  containing a silicon atom. 

Table I gives values of  g.b near [ 0 0 0 1 ]  orien- 
tation. One can see from the table that partials go 
out of  the contrast for reflections o f  the 11 2 0  
type. However there is a reflection of  this type 
parallel to the total Burgers vector of  the ribbon 
where the two partials will be both visible, Fig. 3, 
and this is used to determine the total Burgers 
vector of  the ribbon. Dislocation ribbons were 

very common and the stacking fault energy 3', 
or rather the quantity 3'//2, was calculated from 
the variation of  the ribbon width as well as from 
extended dislocation nodes. 

4 .1 .  S t a c k i n g  fau l t  e n e r g y  
The dependence of  the dislocation ribbon width d 
on its character i.e. the angle c~ between its total 
Burgers vector and the dislocation line, is rep- 
resented [9] by: 

f t --  - - c o s  2~ (1) d = d o  1 2 - - v  

Figure 3 Curved ribbon used to measure the variation of the width d with angle ~. The total Burgers vector b of the 
ribbon is also indicated. The insets are segments of the dislocation, all at the same magnification. 

486 



o 
d i a l .  

t --..< 

I , , , , i , , , , I , r , , I , ,  , , [ ' ' t ' l ' ' ' , l , , , , l i l l h h ~ L I p l  ~ ,, , I , , ,  ,I , , ~ l i l l  ,,14 ,, , I , , , , I  II , , t , ,  , , I , , ,  , l l l l l l  

- 1 - 0 . 5  0 + 0 . 5  + 1  
~ c o s  2 o  

Figure 4 Variation of ribbon width d with 
cos 2c~. A few isolated measurements are 
also included as data and the least squares 
fit straight line is indicated. 

where 
/lb 2 2 - v 

d o ~ - - ,  - -  

8rr7 1 - -  v 

and/~ is the shear modulus,  v is the Poisson's ratio, 
7 is the stacking fault energy and b is the Burgers 
vector o f  the partial  dislocation. 

Fig. 3 shows one of  the ribbons used to 
measure the variation of  the ribbon width as a 
function of  its character, while the insets, which 
are all of  the same magnification, are the different 
segments used for the measurements.  Fig. 4 shows 
a diagram with the data for this r ibbon. The value 
of  v, deduced from the slope of  the straight line, 

is v = 0.43 + 0.05, while do = 430 A. 
Using these values and b = 2 . 4 7 A  for SiTe2, 

the value 7//1 = 1.6 x 10 -11 cm could be derived. 

All experimental  errors were carefully controlled 
[ t 0 ] .  Calculations of  intensity profiles of  the 

r ibbon used were performed in order to investigate 
the effect of  the dislocation image shift on the 

stacking fault energy measurements. The cal- 

culations were based on the two-beam dynamical 
equations of  electron diffraction including 
absorption. Microdensitometer traces of  all the 
different segments of  a curved ribbon were taken 
with an output  magnification of  50 x and the 

apparent  r ibbon widths were measured. These 

widths were considered to correspond to the 
" t rue"  partial dislocation distances of  the ribbon. 
The intensity profiles of  all the segments were 
then calculated and were found to give apparent,  

i.e. peak-to-peak, partial dislocation distances 

about  1% greater than the used " t rue"  distances 
for the calculations. Hence the value of  the 
stacking fault energy should be increased by 1% 
which is well within the error of  measurement.  

Figure 5 (a) Network of extended and contracted dislocation nodes. (b) The same area with one set of partial dis- 
locations out of contrast. 
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Figure 6 Interaction of two isolated dislocation ribbons 
and the formation of extended and contracted nodes. 

The calculations involved together with the com- 
puter program have been the subject of  a paper 
by one of  us [11].  

Fig. 5a shows an array of  extended and con- 
tracted nodes. One set of  partial dislocations is 
out of  contrast in Fig. 5b. The mean value of  the 
node width w = 500A;  the radius of  curvature 
p = 1600)~ and the node character a = 40 ~ were 
measured from Fig. 5a. 

The equilibrium configuration of  extended 
dislocation nodes was studied by Brown [12, 13],  
Siems [14] and Jossang et al. [15].  Following the 
theory of  Brown and taking p = 0.43 and b = 2.47 
we have calculated the values 7w/l~b 2 = 0.29 and 
7//~ = 3.5 x 10 -11 cm. This value of  7/~ is larger 
than the value found by the ribbon width method. 
However, the radius of  node curvature is large 
compared to the foil thickness and the assumption 
of  infinite medium becomes a poor approxi- 

mation [13].  Thus, the results of  the above two 
methods are comparable within their limitations, 
and give the order of  magnitude of  the stacking 
fault energy for the low energy stacking faults. 

Fig. 6 shows the reaction o f  two isolated 
ribbons and the formation of  an extended and a 
contracted node. The value of  7/~ deduced from 
the extended node is the same as the value 
obtained using the extended nodes of  the network 
in Fig. 5a. No difference was found in the stacking 
fault energy between crystals with and without 
superstructure, within the limits of  the experi- 
mental error. 

4.2. Three-fold r ibbons 
Symmetrical as well as asymmetrical three-fold 
ribbons have been observed, Figs. 7a and b. Sym- 
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Figure 7 (a) Symmetrical and Co) asymmetrical three-fold 
ribbons. 

metrical three-fold ribbons could be produced by 
the following reaction 

(Ao + oB) + (oC + Ao) ~ Ao + Aa + Ao 

type I type II 

i.e. the two innermost dislocations combine and 
no overlapping occurs [7].  

This is evidence that type II stacking faults 
do exist and also that the two stacking faults 
have roughly equal energy. The width w of  the 
symmetrical three-fold ribbon is a function of  its 
character [10] i.e. 

w = w0 [1 --  (v/2 -- v) cos 2a] (2) 

where 
3gb 2 " 2 - v 

W 0 = - -  

47r3, 1 -- v 

The width d of  a single ribbon is also a function of  
its character (Equation 1) and for the same value 
of  p = cos 2eL the ratio w/d is a function o f  v given 
by 

w 6[2 -- v(1 + p)] 

d 2 -- u(1 + 2p) 

In Fig. 8 the ratio w/d is plotted as a function of  u. 
The measured width of  the three-fold ribbon in 
Fig. 7a is w = 2400)~ and its character is ~ = 40 ~ 
The corresponding value of  a single ribbon for 
a = 40 ~ is d = 380 A, Fig. 4, so that the ratio w/d 
becomes equal to 6.32. From Fig. 8 the deduced 
value of  v is v = 0.44, which is in good agreement 
with the previously calculated value v = 0.43. 

Asymmetrical three-fold ribbons (Fig 7b) could 
be produced by a cross-over reaction of  two simple 
ribbons of  the same type, when overlapping takes 
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Figure 8 Plot of  the  variation of  w/d as a func t ion  of  u for various angles c~. 

place. A possible reaction could be of the form 

(Aa + oB) + (Ao + aC) = Act + Aa + A~r 

type I type I 

The ratio of  the stacking fault energies in both 
regions can be determined from the width of the 

two halves by means of the formula [7] ; 

' ~ 1  - -  r(2 + r) 

72 2r + 1 

where r is the ratio of the widths. The measured 
value of r is 2.4 which gives 71/72 = 1.8. This is 
very close to the theoretical value 71/72 = 2 for 
overlapping faults of the same type (I or I1). 

Figure 9 Undissociated dislocations repel each other  upon  
changing their direction. 

4.3. Interaction of dislocations 
Regular networks were commonly observed. The 
interaction of ribbons in the same glide plane leads 
to the formation of a hexagonal network of 
extended and contracted nodes, Fig. 5a. 

Perfect dislocations in the basal plane were also 
observed, Fig. 9. Probably the stacking fault 
energy is so large that no visible dissociation 
occurs. Some of the undissociated dislocations 
seem to dissociate upon changing their orien- 
tations at A, B, C. A possible explanation [10] 
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could be that these are, in fact, two dislocations in 
edge orientation one on top of the other in an 
equilibrium position. Upon changing direction 
they become screw dislocations and as a con- 
sequence they repel each other. 

The dislocation in Fig. 10a has dissociated into 
partials at A, B, C, making a sequence of loops. In 
Fig. 10b both partials are visible while in Fig. 10c 
one partial is out of contrast for an operating 
reflection of 1 1 20  type. The Burgers vectors 
of the partials were of the a/3 (1 0 1 0) type. 
A possible interpretation for this reaction is an 
interaction between the dislocation and a sequence 
of loops [16]. A strong interaction between the 
dislocation and the loop requires the loop to have 
a Burgers vector component in the basal plane. 
Nevertheless, no isolated lQops have been 
observed, which indicates that the 6rigin of these 
loops is closely related to the dislocations. The 
case for the loops to be interstitial, with Burgers 
vectors perpendicular to the basal plane, is very 
unfavourable. This is because basal plane dis- 
locations interact with inerstitial loops only 
through their long-range stress fields and it is 
unfavourable energetically to produce any splitting 
into partials. Furthermore, we have not observed 
the characteristic residual contrast of the isolated 
interstitial loops and tilting the specimen at about 
25 ~ has not revealed loops of this type. 

5. Conclusions 
The ratio 7//2 for SiTe2 was found to be 5 times 
larger than that for SnS: while the order of magni- 
tude of the width of the dislocation ribbons for 
SiT% was about 5 times smaller than that for 
SnS2, which has the same structure. These may 
suggest that the stacking fault energy of SiT% is 
rather high for a layered structure crystal. The 
stacking faults of dislocation ribbons were 
analysed in Section 3. 

The occurrence of fault (iii) is improbable 
because of its high energy, while fault (iv) is not 
unfavourable in our case as it was concluded in 
Section 3 that a synchro-shear movement should 
not be expected. Case (i) produces the lowest 
energy deviation from the normal stacking sequence 
and the calculated value of the 3'//2 should be attri- 
buted to this case. Moreover, it is unambiguously 
concluded from the symmetrical three-fold ribbons 
that the low energy (typeII) stacking fault (iv) can 
occur. 

The phenomenon of polytypism is closely 
related to the stacking fault energy and from this 
point of view the SiTes is appropriate for electron 
microscopy observations unlike CdI2 which de- 
composes when exposed to normal electron beams 
[6], and consequently no experimental value for 
stacking fault energy has been available for this 
compound until now. 
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Figure 10 (a) interaction between 
a dislocation and a sequence of 
loops; Co) both sides of the loop 
are in contrast and in (c) one side 
of the loop is out of contrast. 
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